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Abstract- In the first step, the EEG signal from each electrode is 
converted to the frequency domain using the Fast Hartley 
Transform. Artifacts in the transformed signal using the 
frequency domain were removed using a band pass Chebyshev 
filter such that only frequencies in the range of 5-15 Hz is 
retained. The minimum energy, maximum energy and the 
average energy is computed. The computed features are trained 
and classified using AD Tree, BayesNet and Instance based 
learners.  
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1. INTRODUCTION 
         A BCI system works by recording the brain signals and 
applying machine learning algorithms to classify the brain 
signals and performing a computer controlled action. The 
most widely used method for signal acquisition is the 
electro-encephalography (EEG). The reason for the 
popularity of EEG is due to the non-invasive way of 
acquiring the brain signals and also it is safe, easy and cheap 
when compared to other methods .   
        Most of the existing application prototypes of BCI use 
EEG signals. Prototypes like “Thought Translation Device” 
[1] which allows paralyzed patient to write sentences, 
spelling system [2], “virtual keyboard” based on motor 
activity [3] are all EEG based BCI systems. Thus the role of 
EEG processing is crucial in the development of BCI.  
The EEG [4] [5]signals is made up of cluster of features. It is 
imperative to extract the functional features from the EEG 
data. Identifying and extracting good features from the 
signals is a crucial step in the design of BCI [6]. Studies [7] 
show that if the features extracted from EEG  are not 
relevant and the neurophysiological signals employed are 
not well defined, then the accuracy of the classification 
algorithm identifying the class of these features, i.e., the 
mental state of the user is greatly reduced.  
     As a result, the correct recognition rates of mental states 
will be very low, which lowers the usability of the BCI or it 
may even be impossible to use by the user.  
 

2. EEG DATA 
     The human nervous system communicates through 
electrical impulses; the functional activity of the brain is 
reflected on the scalp as variation of the surface potential 
distribution. Due to the electrical nature of the surface 
potential variation, it is possible to measure the variation by 
fixing an array of electrodes to the scalp.   
The electrodes measure the voltage between the fixed points, 
which are then filtered, amplified and recorded as EEG data. 
The international 10-20 system of electrode placement is the 

most widely used method of placing the electrodes at 
specific intervals along the scalp.  
    Figure 2.1 shows the placement of electrodes according to 
the 10-20 system. The letter identifies the lobe and the 
number the hemispheric location. 

 
Figure 2.1: Electrodes placement of 10–20 system. 

 
      The letters used are: F: Frontal lobe. T: Temporal lobe. C: 
Central lobe. P: Parietal lobe. O: Occipital lobe. "Z" refers to 
an electrode placed on the mid-line.  
      The voltage potentials produced by the brain are at 
microvolt level, the electrodes conduct this voltage to 
amplifiers that magnify the signals thousand times. This 
EEG collected as electrical patterns from the scalp are 
digitalized and stored as raw records.  
    The analysis of the EEG signals is complex as large 
amount of data is received from each electrode. Brain waves 
are not emitted alone, but the state of brain makes one 
frequency range more pronounced than the others.  
     The main problem in automated EEG analysis, as in BCI, 
is the detection of the different kinds of interference 
waveforms. These interference waveforms are termed 
artifacts; artifacts are included in the EEG signal during the 
recording. The main sources of artifacts are: 
 
 EEG Equipment 
 Electrical interference external to recording system 
 The leads and the electrodes 
 Normal electrical activity from heart, eye blinking, eye 

movement. 
 

Artifacts can be easily detected on visual inspection but 
in automated analysis these cause serious misclassification. 
Recognition and elimination of the artifacts is crucial for the 
development of practical BCI systems. The eyeblink and 
eyeball movement are the most severe of the artifacts.  
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HT’s discrete formulation DHT is given by: 
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 Which is applied to the discrete-time function x (n) with 
period N. The properties of the DHT are similar to those of 
the Discrete Fourier Transform (DFT) and Fast Hartley 
Transform (FHT) [8]  which is similar to the familiar Fast 
Fourier Transform (FFT). Some of the properties of DHT 
are listed: 
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  Obtaining energy values using regular Fast Hartley 
Transform introduces artifacts associated with EEG signal 
measurement. To reduce the artifacts we propose a 
normalization of the obtained energy using Gaussian 
methods on the Fast Hartley Transform. The normalization 
provides the benefit to the system performance by 
desensitizing the system to the signal amplitude variability. 
 

4. CHEBYSHEV FILTER 
 Chebyshev filters are used to separate one band of 
frequencies from another. The EEG energy was computed in 
the 5-15 Hz region to primarily capture the Beta waves in 
the EEG signal which is closely linked to motor behavior 
and is generally attenuated during active movements. 
Chebyshev filter was primarily used for its speed. 
Chebyshev filters are fast because they are carried out by 
recursion rather than convolution. The design of these filters 
is based on the z-transform. 
 

5. MEASURING CLASSIFICATION ACCURACY OF THE 

PROPOSED FEATURE EXTRACTION SYSTEM USING 

ALTERNATING DECISION TREE 
  An Alternating Decision Tree (AD Tree) [9]  is a 
machine learning rule for classification and is a 
generalization of decision tree that have connections to 
boosting. It consists of decision nodes and prediction nodes. 
In each node the decisions are based on the predicate 
condition. AD trees always have prediction nodes as both 
root and leaves.     
  An epoch is classified through AD Tree by 
following all paths for which all decision nodes are true and 
summing any prediction nodes that are traversed. This is 
different from binary classification trees such as 
Classification and Regression Tree (CART) or C4.5 in 
which an instance follows only one path through the tree. 
  The AD Tree algorithm’s fundamental element is 
the rule which consists of a precondition, condition and two 
scores. A condition is a predicate which is in the form of 
attribute comparison value. The tree structure can be derived 
from a set of rules by making note of the precondition that is 
used in each successive rule. Using 10 fold cross validation 
the tree is constructed using 21 leaves.   
 

6. MEASURING CLASSIFICATION ACCURACY OF THE 

PROPOSED FEATURE EXTRACTION SYSTEM USING BAYES 

NET 
Bayesian networks (BNs), also known as belief 

networks, is a probabilistic graphical models (GMs). The 
knowledge about uncertain domain is presented in graphical 
structures. The nodes in the graph represent random variable 
and edges between the nodes correspond to probabilistic 
dependencies between the variables. Statistical and 
computational methods are used to compute the conditional 
dependencies. Hence, Bayesian Networks combine 
principles from graph theory, probability theory, computer 
science, and statistics. 

BNs correspond to another graphical model 
structure known as a directed acyclic graph (DAG). DAGs 
are popularly used in the statistics, machine learning, and 
artificial intelligence. The advantages of BNs are that it is 
both mathematically thorough and easily understandable. 
Joint Probability Distribution (JPD) of random variables are 
effectively represented and easily computed through BNs.  

The structure of a DAG is made up of set of nodes 
(vertices) and set of directed edges. The random variables 
are represented as nodes labeled by the variable names and 
the dependence between the variables is represented by the 
edges. Thus, the net is represented in form of circles and 
arrows as shown in figure 6.1. An edge (or arrow) from node 
Xi (circle representing variable) to node Xj represents a 
statistical dependence between the variables. For instance, 
the arrow connecting X1 to X2 represents the statistical 
dependence between X1 and X2, and the value of X2 depends 
upon the value of X1. Node X1 is referred to as parent node 
of X2 and conversely, X2 is referred to as child of X1.  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6.1 Simple Bayesian Network 
 

A BN shows simple conditional independence 
statement. Each variable is independent of its non 
descendents in the graph. This characteristic is useful in 
reducing the number of parameters required to characterize 
the JPD of the variables, thus the posterior probabilities are 
efficiently calculated for given conditions. The DAG 

X1 

X2 X3 

X4 

X6 

X5 
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